Exercise 9.2.1

Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.

$$
\frac{\partial \psi}{\partial x}+2 \frac{\partial \psi}{\partial y}+(2 x-y) \psi=0
$$

Solution

Since ψ is a function of two variables $\psi=\psi(x, y)$, its differential is defined as

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y
$$

Dividing both sides by $d x$, we obtain the relationship between the total derivative of ψ and the partial derivatives of ψ.

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{d y}{d x} \frac{\partial \psi}{\partial y}
$$

In light of this, the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d \psi}{d x}+(2 x-y) \psi=0 \tag{1}
\end{equation*}
$$

along the characteristic curves in the $x y$-plane that satisfy

$$
\begin{equation*}
\frac{d y}{d x}=2, \quad y(0, \xi)=\xi \tag{2}
\end{equation*}
$$

where ξ is a characteristic coordinate. Integrate both sides of equation (2) with respect to x to solve for $y(x, \xi)$.

$$
y(x, \xi)=2 x+\xi
$$

From this equation we see that $2 x-y=-\xi$, which means equation (1) becomes

$$
\frac{d \psi}{d x}-\xi \psi=0 .
$$

Solve this ODE by separating variables.

$$
\frac{d \psi}{\psi}=\xi d x
$$

Integrate both sides.

$$
\begin{gathered}
\int \frac{d \psi}{\psi}=\int \xi d x \\
\ln |\psi|=\xi x+f(\xi)
\end{gathered}
$$

Here f is an arbitrary function of the characteristic coordinate ξ. Exponentiate both sides.

$$
\begin{aligned}
|\psi| & =e^{\xi x+f(\xi)} \\
& =e^{f(\xi)} e^{\xi x}
\end{aligned}
$$

Introduce \pm on the right side to remove the absolute value sign.

$$
\psi(x, \xi)= \pm e^{f(\xi)} e^{\xi x}
$$

Use a new arbitrary function $g(\xi)$ for $\pm e^{f(\xi)}$.

$$
\psi(x, \xi)=g(\xi) e^{\xi x}
$$

Therefore, since $\xi=y-2 x$,

$$
\psi(x, y)=g(y-2 x) e^{x(y-2 x)}
$$

