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Exercise 9.2.1

Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.

O 00 _
%+28—y+(2$—y)¢—0-

Solution

Since 9 is a function of two variables ¢» = ¥ (x,y), its differential is defined as
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Dividing both sides by dx, we obtain the relationship between the total derivative of ¢ and the

partial derivatives of 1.
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In light of this, the PDE reduces to the ODE,
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along the characteristic curves in the zy-plane that satisfy
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where ¢ is a characteristic coordinate. Integrate both sides of equation (2) with respect to x to
solve for y(z,§).

y(z,8) =21 +¢

From this equation we see that 2z — y = —&, which means equation (1) becomes
d¢
— —&p=0.
Solve this ODE by separating variables.
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Integrate both sides.
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Here f is an arbitrary function of the characteristic coordinate £. Exponentiate both sides.
| = ST+ (6)
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Introduce + on the right side to remove the absolute value sign.
(&) = el @l
Use a new arbitrary function g(¢) for e/,
V(. €) = g(€)e*”

Therefore, since £ =y — 2x,

b(z,y) = gly — 2x)e” V=2,
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